
Stephen Checkoway

Programming Abstractions
Lecture 9: Fold right

Announcements

Homework 1 due on Friday

Three free late days

Office hours on Friday 13:30–14:30

Ask questions on Piazza!

Lots of similarities between functions
(sum lst)

(define (sum lst)  

 (cond [(empty? lst) 0]  

 [else (+ (first lst)  

 (sum (rest lst)))]))

Lots of similarities between functions
(length lst)

(define (length lst)  

 (cond [(empty? lst) 0]  

 [else (+ 1  

 (length (rest lst)))]))

Lots of similarities between functions
(map proc lst)

(define (map proc lst)  

 (cond [(empty? lst) empty]  

 [else (cons (proc (first lst))  

 (map proc (rest lst)))]))

Lots of similarities between functions
(remove* x lst)

(define (remove* x lst)  

 (cond [(empty? lst) empty]  

 [(equal? x (first lst) (remove* x (rest lst))]  

 [else (cons (first lst)  

 (remove * x (rest lst)))]))

Let's rewrite this one to look more like the others

(define (remove* x lst)  

 (cond [(empty? lst) empty]  

 [else (if (equal? x (first lst))  

 (remove* x (rest lst))  

 (cons (first lst)  

 (remove* x (rest lst))))]))

Some similarities

Basic structure is the same (rewriting slightly)  

(define (fun … lst)  

 (cond [(empty? lst) base-case]  

 [else  

 (let ([head (first lst)]  

 [result (fun … (rest lst))])  

 (combine head result))]))

Function base-case (combine head result)

sum 0 (+ head result)

length 0 (+ 1 result)

map empty (cons (proc head) result)

remove* empty (if (equal? x head) result (cons head result))

(define (fun lst)  

 (cond [(empty? lst) base-case]  

 [else (let ([head (first lst)]  

 [result (fun (rest lst))])  

 (combine head result))]))

lst: list of !

base-case: "

A. combine: ! × " ! !

B. combine: ! × " ! "

C. combine: " × ! ! !

D. combine: " × ! ! "

8

(define (fun lst)  

 (cond [(empty? lst) base-case]  

 [else (let ([head (first lst)]  

 [result (fun (rest lst))])  

 (combine head result))]))

lst: list of !

base-case: "

combine: ! × " ! "

If ! = boolean and " = string, what type is (fun '(#t #f #f))?

A. boolean

B. string

C. boolean ! string

D. string ! boolean

9

Abstraction: fold right
(foldr combine base-case lst)

combine: ! × " ! "

base-case: "

lst: list of !

foldr: (! × " ! ") × " × (list of !) ! "

Elements of lst = (x1 x2 ... xn) and base-case are combined by

computing

zn = (combine xn base-case)

zn-1 = (combine xn-1 zn)

zn-2 = (combine xn-2 zn-1)

⋮

z1 = (combine x1 z2)

Abstraction: fold right
(foldr combine base-case lst)

cons

1 cons

2 cons

3 cons

4 cons

5 '()

combine

1 combine

2 combine

3 combine

4 combine

5 base-case

sum as a fold right
(foldr combine base-case lst)

(define (sum lst)  

 (foldr + 0 lst))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

+

1 +

2 +

3 +

4 +

5 0

combine: number × number ! number

base-case: number

lst: list of number

Print out the arguments

(foldr (λ (x acc)

 (let ([result (+ x acc)])

 (printf "(+ ~s ~s) => ~s~n" x acc result)

 result))

 0

 '(1 2 3 4 5))

(+ 5 0) => 5

(+ 4 5) => 9

(+ 3 9) => 12

(+ 2 12) => 14

(+ 1 14) => 15

+

1 +

2 +

3 +

4 +

5 0

length as a fold right
(foldr combine base-case lst)

(define (length lst)  

 (foldr (λ (head result) (+ 1 result)) 0 lst))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

λ

1 λ

2 λ

3 λ

4 λ

5 0

map as fold right
(foldr combine base-case lst)

(define (map proc lst)  

 (foldr (λ (head result)  

 (cons (proc head) result)) 

 empty  

 lst))

proc: ! ! "

combine: ! × (list of ") ! list of "

base-case: list of "

lst: list of !

map: (! ! ") × (list of !) ! list of "

remove* as fold right
(foldr combine base-case lst)

(define (remove* x lst)  

 (foldr (λ (head result)  

 (if (equal? x head)  

 result  

 (cons head result)))  

 empty  

 lst))

x: !

combine: ! × (list of !) ! list of !

base-case: list of !

lst: list of !

remove*: ! × (list of !) ! list of !

Consider the procedure

(define (foo lst)

 (foldr (λ (head result)

 (+ (* head head) result)

 0

 lst))

What is the result of (foo '(1 0 2))?

A. '(1 0 2)

B. '(5 4 4)

C. 5

D. 1

E. None of the above
17

Consider the procedure

(define (bar x lst)

 (foldr (λ (head result)

 (if (equal? head x) #t result))

 #f

 lst))

What is the result of (bar 25 '(1 4 9 16 25 36 49))?

A. '(#f #f #f #f #t #f #f)

B. '(#f #f #f #f #t #t #t)

C. #f

D. #t

E. None of the above
18

Example: a light switch state machine

Consider a light switch connected to a light

The light is in one of two states: on and off

‣ Represent this with symbols 'on and 'off

There are three actions we can take

‣ 'up: move the switch to the up position; turns the light on

‣ 'down: move the switch to the down position; turns the light off

‣ 'flip: flip the position of the switch; changes the state of the light

If the light is initially 'off, then after the sequence of actions 

'(up up down flip flip flip),  

the light will be 'on

Implement the state machine
(next-state action state)

Possible actions: 'up, 'down, 'flip

Possible states: 'on, 'off

Write a (next-state action state) function that returns the next state of

the light after the action is performed in the given state

Write a (state-after actions) that returns the state of the light assuming

it's initially 'off and the actions in the list actions are performed in order

‣ Use foldr and be careful about the order of operations

Let's write foldr
(foldr combine base-case lst)

cons

1 cons

2 cons

3 cons

4 cons

5 '()

combine

1 combine

2 combine

3 combine

4 combine

5 base-case

